
Master 1

Sciences, Technologies, Santé

2024-2025

Mathématiques et applications

Data Science

M1 DS

CONTENUS

SOMMAIRE

03

Contacts de la formation

04

Calendrier de la formation

05

Présentation de la formation

08

Volumes horaires et évaluations

10

Contenu des enseignements Semestre 1

16

Contenu des enseignements Semestre 2

23

Validation du M1 et poursuite d'études

Sommaire interactif pour revenir au sommaire cliquer sur \gg

CONTACTS

Sandrine TRAVİER : Directrice adjointe à la Pédagogie

Tél.: 02 41 73 50 01

sandrine.travier@univ-angers.fr

Gilles Stupfler: M1 Responsable pédagogique et Président du Jury

Tél.: 02 41 73 50 27

gilles.stupfler@univ-angers.fr Bureau : bâtiment İ, porte 115

Fabien PANLOUP: M2 Responsable pédagogique et Président du Jury

Tél.: 02 41 73 50 29

fabien.panloup@univ-angers.fr Bureau : bâtiment İ, porte 221

Sandrine HERGUAİS: Gestion de la scolarité et des examens

Tél.: 02 41 73 54 85

sandrine.herguais@univ-angers.fr

Scolarité - Examens

Bâtiment A, Rez-de-chaussée Horaires d'ouverture 8h30 – 12h30 13h30 – 17h00

Du lundi au vendredi

Semestre 1

Rentrée et début des cours	Lundi 02 septembre 2024
Vacances d'automne	Du samedi 26 octobre 2024 au dimanche 03 novembre 2024
Fin des cours du l ^{er} semestre	Vendredi 06 décembre 2024
Vacances de Fin d'année	Samedi 21 décembre 2024 au dimanche 05 janvier 2025
Examens l ^{er} semestre - Session 1	Du mercredi 11 décembre 2024 au vendredi 13 décembre 2024 Du Lundi 06 janvier 2025 au mercredi 08 janvier 2005
Jury l ^{er} semestre - Session l	Mercredi 29 janvier 2025

Semestre 2

Début des cours	Jeudi 09 janvier 2025
Vacances d'hiver	Du samedi 15 février 2025 au dimanche 23 février 2025
Fin des cours du 2 ^{ème} semestre	Vendredi 11 avril 2025
Vacances de printemps	Du samedi 12 avril 2025 au lundi 21 avril 2025
Examens 2 ^{ème} semestre - Session 1	Du lundi 05 mai 2005 au mercredi 07 mai 2005
Pont de l'Ascension	Du Jeudi 29 mai 2025 au Dimanche 01 juin 2025
Soutenance de TER et projets	Du mercredi 21 mai 2025 au vendredi 23 mai 2025
Jury 2 ^{ème} semestre - Session 1	Mercredi 28 mai 2025
Examens 1 ^{er} et 2 ^{ème} semestre - Session 2	Du lundi 09 juin 2025 au vendredi 13 juin 2025
Jurys l ^{er} et 2 ^{ème} semestre - Session 2	Mardi 01 juillet 2025

Planning susceptible de modifications

PRÉSENTATION DE LA FORMATION

La data Science désigne une discipline à l'interface entre modélisation mathématique, statistique et informatique, née de la nécessité croissante de traiter et d'exploiter les données du big data. La data science est désormais l'outil essentiel d'aide à la décision dans des domaines d'activités extrêmement variés : banque, finance, assurance, e-commerce et grande distribution, communication et marketing, santé, agro-alimentaire, aéronautique et défense, internet des objets et télécoms, etc..

Le parcours Data Science (DS) du master mention Mathématiques et Applications est une formation de niveau un (Bac+5). Il vise à former des cadres data-scientists capables de mettre en œuvre les techniques mathématiques et informatiques inhérentes à ce métier, possédant en outre des compétences métiers propres aux secteurs d'activités visés par le choix d'options.

Objectifs, compétences et capacités visés par la formation

Le master Data Science (DS) est une formation en deux ans qui débouche sur le diplôme national de Master mention Mathématiques et Applications, parcours Data Science. A l'issue de la formation, le ou la diplômé(e) possède:

Des compétences en mathématiques. Le diplômé maîtrise les méthodes de l'analyse statistique et algorithmique de l'information, qu'elles soient classiques (datamining, classification, ...) ou spécifiques au big data (machine learning et deep learning, ...), ainsi que les méthodes associées d'optimisation. Le diplômé est en capacité de modéliser les processus aléatoires, de les simuler et de confronter le modèle aux données statistiques du problème.

Des compétences en informatique. Le diplômé du master dispose des com-

pétences relatives aux outils classiques d'analyse des données (R, Python,...), de data management (SGBDR et moteur de stockage SQL,...) et plus spécifiques aux données de grandes dimensions et/ou non structurées : MapReduce et environnement Hadoop/HDFS, entrepôts de données Hive, PiG et analyse de données, etc.. L'aptitude à la visualisation des données de grandes dimensions, images et graphes complète ce volet de compétences.

Des aptitudes professionnelles. Le diplômé du master sait définir un projet, ses objectifs et son contexte, les modalités de réalisation et d'évaluation des actions, leurs priorités et leur planning. Il sait utiliser les technologies de l'information et de la communication, effectuer une recherche d'information à partir de sources diverses, organiser une veille technologique. Il a une bonne capacité de communication, une bonne maîtrise de l'anglais scientifique et technique (certification), et sait rédiger clairement une note ou un rapport selon des supports de communication adaptés.

Des compétences métiers. Suivant le choix d'option, le diplômé possède des aptitudes spécifiques au traitement et à l'analyse des données de la biologie (données omiques notamment), ou celles des entreprises dédiées aux technologies du numérique.

Débouchés visés et rémunération des diplômés

Les diplômés du master Data Science (DS) occupent des emplois de cadre Data scientist (ou Data miner, Data analyst, etc..) couvrant un large spectre de secteurs d'activités, touchant aussi bien au domaine industriel qu'à celui du tertiaire. Sont plus particulièrement visés :

- Option données biologiques : secteurs de la santé, de la pharmacie, la bio-industrie,

l'agro-industrie, les laboratoires de type İnserm, Cirad, İnstitut Pasteur, CEA, etc...

- Option données numériques : tout secteur tel que sociétés de conseil en gestion des entreprises ou spécialisées en datamining, de la grande distribution, les grandes banques et compagnies d'assurances, etc..

Selon l'APEC, la rémunération des Data scientists se situe entre 32 et 40 keuros brut/ an en début de carrière. Les enquêtes insertion récentes montrent une excellente insertion professionnelle au niveau cadre, pour un salaire moyen brut mensuel de 2600 Euros (hors primes et 13ème mois).

Le master est essentiellement à visée professionnelle. Les très bons étudiants peuvent poursuivre par une thèse de doctorat, en particulier dans le cadre d'une convention de partenariat avec une entreprise ou dans contexte académique

Exemples de stages ou d'emplois récents : Renault Dİ-RC, İNRA, iAdvize, CPAM Maine et Loire, LNE, Sodi-france-Netapsys, Manitou, Parker-Meggit, SFR, İneox, AVİSİA, Metro Cash & Carry France, Tronico groupe Alcen, İmbrikation, İnstitut de Cancérologie de l'Ouest, CHU-Angers, Axens İFP Technologies, BRED Banque populaire, Groupe PSA, CT İngénierie, Harmonie Mutuelle, Banque de France, VyV Care İT, Capgemini, Sopra-Steria, Sigma İnformatique, Socomec SAS, İnstitut Pasteur, ANSM, GRTgaz, RTE, Thales, Factoryz, CNPTİ,...

Public visé, pré-requis, conditions d'admission, tarification

Le master Data Science est à capacité limitée et l'admission en première (M1-DS) et deuxième année (M2-DS) du master est sélective. En dehors des qualités académiques, le recrutement accorde une part importante à la motivation des candidats. La validation du M1-DS entraîne l'admission de droit en M2-DS.

Formation initiale. Le MI-DS s'adresse en priorité aux étudiants diplômés d'une licence de Mathématiques (parcours fondamental ou appliqué), d'une licence MiASHS validée avec aisance dans les matières mathématiques, d'une double licence maths/éco ou maths/info, ou de toute formation d'un niveau au moins équivalent. Sous réserve d'un niveau suffisant en mathématique, les dossiers d'étudiants ayant eu un parcours plus dirigé vers l'informatique et/ou l'ingénierie sont considérés avec intérêt.

Formation continue. Les candidatures relevant de la formation continue sont les bienvenues et considérées avec la plus grande attention. Les tarifs sont variables et communiqués suite à l'étude du dossier. Un ensemble de financements est disponible (se renseigner auprès de la Direction de la Formation Continue).

Les pré-requis à l'entrée du M1-DS couvrent le programme classique d'une Licence de Mathématiques ou tout autre programme européen ou international équivalent. Outre l'aptitude mathématique, une connaissance et une pratique de base d'outils de programmation sont recommandées (Python, et/ou R par exemple). L'acquis du certificat C2i-1 d'informatique est apprécié. Le diplôme de master visant des compétences en anglais certifiées de niveau B2 du CECRL, un niveau minimal B1 dans cette langue est recommandé à l'entrée du M1-DS.

L'enseignement se faisant essentiellement en français, un niveau minimal B2 certifié en français est exigé des étudiants internationaux à l'entrée du M1-DS.

Alternance en master Data SCIENCE

Le M2-DS est ouvert à l'alternance, en apprentissage et contrat de professionnalisation. Bien que non obligatoire (stage long possible en M2-DS), ce format de formation est recommandé. Contactez les responsables de la formation pour plus d'informations et connaître les entreprises qui nous ont accordé leur confiance. (Attention : certaines recrutent près de 8 mois à l'avance et exigent un stage préalable en fin de M1-DS).

Des raisons de choisir le master Data Science (DS) de l' \mathcal{U} A

La qualité de la recherche française en mathématiques fondamentales et appliquées est mondialement reconnue : suivant les critères choisis, elle se place du premier au troisième rang mondial. Dans ce cadre, la recherche en mathématiques du laboratoire LAREMA de l'Université d'Angers (une soixantaine de membres dont une quarantaine de permanents et des doctorants participant aux enseignements), associé au CNRS et partenaire du Labex Lebesgue, se distingue par son excellence. Aussi, les étudiants du Master DS ont l'assurance de bénéficier des connaissances et des innovations les plus récentes, celles à même d'intéresser les entreprises dans leur stratégie compétitive.

L'Université d'Angers est reconnue par ses résultats en matière de taux de réussite et d'insertion professionnelle de ses 22 700 étudiants : sur ces deux points, les enquêtes ministérielles la situent aux toutes premières places des universités françaises. Les étudiants du Master DS ont l'assurance d'un accompagnement performant de leurs études jusqu'à leur insertion professionnelle.

Angers et son agglomération, ville étudiante par excellence (plus de 40 000 étudiants), apparaît dans les enquêtes nationales comme étant l'une des villes les plus attractives dans ce domaine. En résumé,

les étudiants du Master DS ont l'assurance d'une qualité de vie et d'étude particulièrement propice à leur réussite et à leur insertion professionnelle.

VOLUMES HORAIRES - ÉVALUATIONS

SEMESTRE 1 30 ECTS

		Volumes horaires						T•	Contrôle des connaissances			
UE	Matières	СМ	TD TP Auto. Et. Tot.	TD	Auto.	Tak	ECTS	Coeff.	l ^{ère} session		2 ^{ème}	Durée
		CIVI		101.	_		Assidus	D.A.	session	СТ		
Bloc	: Mathématiques											
									CT 0,4 1	0	0	
1	Analyse Numérique Matricielle	16	12	12	_	40	5	5	CC 0,3 TP 0.3	CT 0,66	CT 0,66	2h30
2	Optimisation Non-Linéaire	16	12	12	_	40	5	5	CT 0,66 CC 0,34	TP 0,34 CT	TP 0,34 CT	2h30
3	Statistique ***	32	16	0	-	48	6	6	CT 0,66 CC. 0,34	СТ	СТ	3h
4	Modélisation Stochastique 1	24	12	12	_	48	6	6	CT 0,66 CC 0,34	СТ	СТ	3h
Bloc	: Numérique et Informatique											
5	POO et Traitement des Données en Python	12	0	36	_	48	6	6	CT 0,5 TP 0,5	OT 0,5 TP 0,5	OT 0,5 TP 0,5	2h
	Mise à Niveau Logiciels et Systèmes	0	0	16	-	16	0	0	-	-	-	_
Bloc	Culture d'Entreprise				'							
	Anglais 1	0	0	16	-	16	2	2	CC 2	Oral 2	Oral 2	
6	Communication Scientifique	0	0	3	-	3	0	0	Р	Р	Р	-
	Droit et Données Numériques	4	0	0	-	4	0	0	Р	Р	Р	-
	Total	104	52	107		263	30	30				

- *** Note plancher 8/20
- 1 Notation TP basée sur projet (rapport + soutenance), avec report de note si supérieure ou égale à 10.
- 2 Oral pouvant accompagner le CC en Session 1. Oral pouvant se transformer en Écrit pour DA et/ou en Session 2.

Conditions de validation du semestre 1

Admis-e si moyenne ≥ 10 et UE3 ≥ 8

CT = Contrôle Terminal CC = Contrôle Continu P = Validation en Présentiel DA = Dispensé d'Assiduité

Auto. Et. = Autonomie Étudiant

SEMESTRE 2 30 ECTS

	Matières	Volumes horaires							Contrôle des connaissances			
UE		СМ	TD	TD	Auto.	Tot.	ECTS	Coeff.	l ^{ère} session		2 ^{éme}	Durée
		СМ	טו	TP	Et.	TOL.		O	Assidus	D.A.	session	СТ
Bloc	: Mathématiques											
1	Datamining et Classification***	20	12	16	-	48	5	5	CT 0,66 CC 0,34	СТ	СТ	3h
2	Modèles de Régression	18	10	16	-	44	4	4	CT 0,5 1 TP 0,5	СТ	СТ	3h
3	Modélisation Stochastique 2	16	12	12	-	40	4	4	CT 0,66 CC 0,34	СТ	СТ	3h
Bloc	: Numérique et Informatique											
4	Structuration des données ***	20	0	36	_	56	6	6	Oral 0,5 2	Oral ² 0,5	Oral ² 0,5	30mn
	chactaraner acc acrinical		, i						CT 0,5	CT 0,5	CT 0,5	2h
Bloc	Culture d'Entreprise											
	Anglais 2	0	0	16	-	16	2	2	CC 3	Oral 4	Oral 4	
5	Insertion Professionnelle	0	0	4	-	4	0	0	Р	Р	Р	-
5	Travail d'Étude et de Recherche	0	3	0	37	40	5	5	Oral 5	Oral 5	Oral 5	45mn
	Stage Facultatif	0	0	0	-	0	0	0	-	_	_	-
Bloc	Métiers au choix de l'étudiant 1 parmi	2										
6	Option 1 : Introduction à la Génomique	20	0	12	-	32	4	4	CC 5	Oral 4	Oral 4	
	Option 2 : Datamining et Économie	14	12	0	-	26	4	4	СТ	TP (dossier)	Oral 15mn	2h
	Total	91	43	106	37	277	30	30				

Total année 195 95 213 37 **540 60**

- *** Note plancher 8/20
- 1 Notation TP basée sur projet (rapport + soutenance).
- 2 Notation TP basée sur projet (soutenance) avec report de la note d'oral si >=10.
- 3 Oral pouvant accompagner le CC en Session 1
- 4 Oral pouvant se transformer en Écrit pour DA et/ou en Session 2.
- 5 Notation basée sur projet (rapport + soutenance).

~	Conditions de validation du semestre 2	Admis-e si moyenne ≥ 10 et UEI ≥ 8 et UE4 ≥ 8
16	Conditions de validation de l'année	Admis•e si (S1+S2) /2 ≥ 10 et et notes plancher du S1 et S2 atteintes

CT = Contrôle Terminal CC = Contrôle Continu P = Validation en Présentiel DA = Dispensé d'Assiduité

Auto. Et. = Autonomie Étudiant

CONTENU DES ENSEIGNEMENTS

SEMESTRE 1

Les noms des responsables et intervenants sont donnés sous réserve de modifications.

BLOC MATHÉMATIQUES UE OBLIGATOIRES

UE1

ANALYSE NUMÉRIQUE MATRICIELLE

Numerical Matrix Analysis

Responsable Eric Delabaere eric.delabaere@univ-angers.fr

PRÉREQUIS

Notions et contenus

Algèbre linéaire et bilinéaire en dimension finie (licence mathématiques L3) ; analyse numérique (licence mathématiques L3) ; langage Python

Compétences et capacités

Maîtriser les notions principales de l'algèbre linéaire en dimension finie : applications linéaires et matrices, image et noyau, rang, changement de base, valeurs et vecteurs propres, matrice adjointe ; produits scalaires, normes vectorielles et normes matricielles ; connaître les propriétés principales des matrices symétriques et hermitiennes ; connaître les rudiments de la programmation sous Python.

CONTENUS

Complexité d'un algorithme ; conditionnement d'une matrice ; rayon spectral ; systèmes linéaires, résolution directe : méthodes de Gauss, factorisation LU et PLU, méthode de Cholesky, méthode QR ; moindres carrés ; systèmes linéaires, résolution itérative : méthode de Jacobi, méthode de Gauss-Seidel; décompositions en valeurs propres et en valeurs singulières (SVD), recherche des valeurs propres : méthode de Jacobi, méthode QR, méthode des puissances.

COMPÉTENCES

– Connaître les conditions d'application des méthodes suivantes de résolutio directe de systèmes linéaires, savoir les expliquer et les mettre en œuvre pour des matrices de petites tailles : méthodes de Gauss, factorisation LU et PLU, méthode de Cholesky, méthode QR.

- Connaître les conditions d'application des méthodes suivantes de résolution itérative de systèmes linéaires, savoir les expliquer et les mettre en œuvre pour des matrices de petites tailles, savoir analyser leur convergence : méthode de Jacobi, méthode de Gauss-Seidel.
- Connaître les conditions d'application des méthodes suivantes de décomposition en valeurs propres ou en valeurs singulières, savoir les expliquer et les mettre en œuvre pour des matrices de petites tailles, savoir analyser leur convergence : méthode des puissances, méthode de Jacobi, méthode QR.
- Savoir expliquer ou construire un script Python des algorithmes précédents, en proposer des améliorations dans certains cadres applicatifs. Connaître et savoir utiliser sous Python des bibliothèques de type numpy ou scipy.linalg.
- Dans des cas pratiques simples, savoir modéliser un problème menant à la résolution de systèmes linéaires, le traiter numériquement sous Python par application des résultats du cours, et être capable d'interpréter les résultats obtenus.

BIBLIOGRAPHIE

- G. Allaire, S.M. Kaber, Algèbre linéaire numérique. Ellipses (2002)
- G. Allaire, Analyse numérique et optimisation. Editions de l'Ecole Polytechnique, 2005.
- G.H. Golub, C.F. Van Loan, Matrix Computation. The John Hopkins University Press, 1989.

OPTIMISATION NON-LINÉAIRE

Nonlinear Optimization

Responsable Jean-Marc Labatte

jean-marc.labatte@univ-angers.fr

PRÉREQUIS

Notions et contenus

Calcul différentiel en dimension finie, analyse (licence mathématiques L3); algèbre linéaire en dimension finie (licence mathématiques L3); analyse numérique (licence L3); langage Python.

Compétences et capacités

Maîtriser le calcul de dérivées, la formule de Taylor au second ordre d'une fonction C²(Rn) (gradient, hessienne) ; connaître et savoir calculer les droites tangentes et les vecteurs normaux à une courbe plane, à une courbe de niveau ; connaître et savoir calculer les plans tangents et les vecteurs normaux à une surface plane, à une surface de niveau ; maîtriser le calcul matriciel et l'interprétation géométrique de l'espace des solutions d'un système linéaire ; connaître les propriétés principales des matrices symétriques réelles et des formes quadratiques ; maîtriser le produit scalaire dans Rⁿ ;

connaître les rudiments de la programmation sous Python.

CONTENUS

Programmation non-linéaire; fonctions convexes en une et plusieurs variables; optimisation sans contraintes; méthode de descente de gradient; méthode utilisant la hessienne (basée sur la méthode de Newton-Raphson pour résoudre une équation non-linéaire); multiplicateurs de Lagrange; optimisation avec contraintes larges; méthode de Karush-Kuhn-Tucker; méthode de pénalisation (du point intérieur).

COMPÉTENCES

- Connaître le comportement et la caractérisation des ensembles et des fonctions convexes.
- Pour un problème d'optimisation donné, savoir reconnaître son type (optimisation avec ou sans contraintes) et savoir choisir la méthode adaptée pour le résoudre parmi les

suivantes : multiplicateurs de Lagrange, méthode de Karush-Kuhn-Tucker, méthode de pénalisation (du point intérieur).

- Dans des cas simples, savoir résoudre complètement un problème d'optimisation par mise en œuvre des méthodes précédentes.
- Comprendre et savoir utiliser sous Python des algorithmes standards d'optimisation convexe.
- Savoir résoudre des problèmes pratiques d'optimisation en une dimension (optimisation sans ou avec utilisation de la hessienne) en utilisant le logiciel Python.

BIBLIOGRAPHIE

- N. Lauritzen, Undergraduate convexity: From Fourier and Motzkin to Kuhn and Tucker. World Scientific (2013)
- S.G. Nash, A. Sofer, Linear and nonlinear optimization. McGraw-Hill (1996)

UE3

STATISTIQUE (Note plancher 8/20)

Statistics

Responsable Mikael Escobar-Bach

mikael.escobar-bach@univ-angers.fr

PRÉREQUIS

Notions et contenus

Théorie de la mesure et intégration (licence mathématiques L3); calcul des probabilités (licence mathématiques L3); algèbre linéaire en dimension finie (licence mathématiques L3).

Compétences et capacités

- Savoir manipuler les opérateurs du calcul des probabilités (espérance, variance, covariance, etc.) pour les variables discrètes ou continues.
- Maîtriser la notion d'indépendance des variables aléatoires et avoir les bases concernant la manipulation des vecteurs aléatoires.
- Connaître les lois des grands nombres et le théorème central limite.
- Avoir les bases de l'algèbre linéaire de Licence.

CONTENUS

Rappels de statistique descriptive ; modélisation statistique ; estimation ponctuelle ;

propriétés des estimateurs ; information de Fisher ; estimation de variance minimale ; tests d'hypothèse par rapport des vraisemblances et par intervalles de confiance ; échantillons gaussiens ; introduction à la statistique bayésienne ; analyse des données (ACP et AFC).

COMPÉTENCES

- Connaître et savoir utiliser le vocabulaire propre à la statistique.
- Savoir proposer un modèle statistique adapté à un échantillon et identifier son paramétrage.
- Savoir estimer les paramètres du modèle (par la méthode des moments ou par maximum de vraisemblance) et leur associer des intervalles de confiance le cas échéant.
- Savoir calculer et interpréter l'information de Fisher apportée par un modèle sur son paramètre.
- Savoir comparer différents estimateurs sur la base des critères usuels.
- Savoir construire les intervalles de confiance adaptés au cadre des échantillons gaussiens.
- Comprendre le principe des tests d'hypothèses, savoir utiliser les intervalles de confiance pour construire des tests exacts ou asymptotiques.
- Comprendre le principe des tests non paramétriques à travers l'exemple des tests du khi-deux ou celui du test de Kolmogorov-Smirnov.
- Comprendre le principe de l'estimation bayésienne à travers quelques exemples simples.
- Comprendre les enjeux de la réduction de dimension à travers l'analyse en composantes principales.
- Comprendre le principe de l'analyse des données à travers les méthodes usuelles (ACP et AFC) et l'interprétation à en donner.

BIBLIOGRAPHIE

 G. Saporta, Probabilités, Analyse des données et Statistique. Technip, 3e édition révisée, 2011

MODÉLISATION STOCHASTIQUE 1

Stochastic Modeling 1

Responsable Fabien Panloup fabien.panloup@univ-angers.fr

PRÉREQUIS

Notions et contenus

Cours d'intégration (licence mathématiques L3) ; Cours de Probabilités (licence mathématiques L3) ; Langage R.

Compétences et capacités

Maîtriser les bases de la théorie de l'intégration, en particulier :

- Maitriser les techniques du calcul d'intégrales sur R.
- Savoir utiliser les théorèmes de convergence.
- Savoir intervertir l'ordre d'intégration et effectuer un changement de variable dans une intégrale multiple, et appliquer ces connaissances au calcul d'aires et de volumes.
- Maîtriser les bases de la théorie des probabilités, en particulier : connaître différents modes de convergence de variables aléatoires ; connaître et savoir utiliser la loi des grands nombres et le théorème central limite.
- Connaître les rudiments de la programmation sous R.

CONTENUS

Compléments de probabilités : Convergence de suites de variables aléatoires (presque sûre, en probabilité, en loi), loi conditionnelle (cas discret ou continu), introduction à l'espérance conditionnelle.

Chaînes de Markov: Chaînes de Markov à espace d'états fini ou dénombrable, définition et propriétés élémentaires, classification des états, temps d'arrêt et propriété de Markov forte, récurrence et transience, lois invariantes, temps d'atteinte, convergence à l'équilibre, théorème ergodique. Application à des modèles classiques (marches aléatoires, ruine du joueur, Ehrenfest, TCP, Wright-Fisher, ...)

Simulation: Modélisation et simulation numérique d'une v.a. de loi classique donnée, d'une suite de v.a. indépendantes. Modélisation et simulation d'une chaîne de Markov, de sa loi invariante. illustration des convergences p.s. et en probabilité et des théorèmes de

convergence à l'aide des simulations : loi des grands nombres, théorème limite central, théorèmes ergodiques pour les chaînes de Markov. Méthodes de Monte Carlo, notions sur les vitesses de convergence. Mise en pratique avec R.

COMPÉTENCES

- Connaître les notions élémentaires sur la convergence de variables aléatoires, savoir calculer une loi conditionnelle ou une espérance conditionnelle dans des cadres standards.
- Connaître les notions élémentaires sur les chaînes de Markov à espace d'état fini ou dénombrable.
- Savoir simuler une variable aléatoire, une chaîne de Markov et sa loi invariante.
- Savoir illustrer les différents résultats de convergence de suites de variables aléatoires et de chaîne de Markov.
- Savoir utiliser la méthode de Monte Carlo.

BIBLIOGRAPHIE

- Nicolas Bouleau, Probabilités de l'ingénieur. Variables aléatoires et simulation. Editions Hermann (2002)
- James Norris, Markov Chains. Cambridge University Press (1998) révisée, 2011

BLOC OUTILS NUMÉRIQUES ET INFORMATIQUE - UE OBLIGATOIRES

UE5

OUTILS INFORMATIQUES

Programmation Orientée Objet (POO) en Python

Object-Oriented Programming (OOP) in Python

Responsable Jacquelin Charbonnel jacquelin.charbonnel@univ-angers.fr

PRÉREQUIS

Notions et contenus

Langage Python ; module de mise à niveau ; cours de programmation et d'algorithmie de Licence.

Compétences et capacités

Connaître les rudiments de l'environnement et du langage Python ; maîtriser les principes algorithmiques pour analyser un problème et concevoir une solution.

CONTENUS

- Développement logiciel : introduction au génie logiciel, environnement et outils de développement (git).
- Python: modules, espaces de nommage, environnements virtuels, containers (modules collections et itertools), manipulation de fichiers, etc.
- Bonnes pratiques du développement informatique
- Programmation objet : principe de la POO, mise en pratique en Python : classes, héritage, exceptions.
- Réalisation d'un projet avec soutenance orale et/ou rapport.

COMPÉTENCES

- Acquérir une bonne maîtrise du langage
 Python et de ses principales librairies.
- Connaître et savoir mettre en œuvre les principaux concepts de la POO.
- Savoir appliquer ces acquis dans le cadre d'un projet de taille significative et de fonctionnalités diverses.

UE5

MISE À NIVEAU LOGICIELS ET SYSTÈMES

Software Refresher Course

Responsables Gilles Stupfler gilles.stupfler@univ-angers.fr
Jacquelin Charbonnel
jacquelin.charbonnel@univ-angers.fr

CONTENUS

- Mise à niveau Python (6h) facultative.
- Mise à niveau R (6h) facultative.
- Système Unix/Linux et connaissance du réseau du laboratoire : organisation du système de fichiers, shell protocoles réseau (4h).

COMPÉTENCES

- Connaître les rudiments du langage Python et de ses environnements de travail (ex: Spyder). Satisfaire les prérequis des modules d'Analyse Numérique Matricielle et d'Optimisation Non-Linéaire.
- Connaître les rudiments du langage R et de ses environnements de travail (ex : RStudio). Satisfaire les prérequis des modules de Modélisation Stochastique 1 et 2, de Datamning et Classification et de Modèles de Régression.
- Savoir utiliser le système Unix/Linux et utiliser les divers services réseau du laboratoire.

BLOC CULTURE D'ENTREPRISE UE OBLIGATOIRES

UE6

CULTURE D'ENTREPRISE

Anglais 1

English 1

Responsable Philippe Torres

philippe.torres@univ-angers.fr

PRÉREQUIS

Notions et contenus

Les bases de la langue anglaise.

Compétences et capacités

Maîtriser le niveau B1 du CECRL (dit « d'utilisateur indépendant »).

CONTENUS

- Permettre aux étudiants de continuer à travailler les cinq compétences en langue compréhension écrite et orale, expression écrite et orale, et interaction orale à travers des supports authentiques (articles, documentaires, documents audio et vidéo d'internet, graphiques...) et des activités variées (exercices de compréhension, d'expression écrite, jeux de rôle, débats, présentations orales...).
- Étoffer les connaissances lexicales.
- Améliorer la prononciation et revoir certains points de langue le cas échéant.
- Valider à l'issue du 2ème voire 3ème semestre un niveau B2 du CECRL (Certification).

COMPÉTENCES

On vise, à l'issue du 2ème voire 3ème semestre du Master, le niveau de compétence B2 du Cadre Européen Commun de Référence pour les Langues (CECRL) qui est résumé comme suit : « Peut comprendre le contenu essentiel de sujets concrets ou abstraits dans un texte complexe, y compris une discussion technique dans sa spécialité. Peut communiquer avec un degré de spontanéité et d'aisance tel qu'une conversation avec un locuteur natif ne comporte de tension ni pour l'un ni pour l'autre. Peut s'exprimer de façon claire et détaillée sur une grande gamme de sujets, émettre un avis sur un sujet d'actualité

et exposer les avantages et les inconvénients de différentes possibilités.»

SUPPORTS OU RÉFÉRENCES

Les ressources mises à disposition en autoformation recouvrent entre autres : plateforme LANSAD UA; Ressources en ligne (UNT UOH par exemple);

Logiciels de type Rosetta Stone. Plateforme Moodle.

UE6

COMMUNICATION SCIENTIFIQUE (LATEX)

Scientific Communication (Latex)

Responsable Eric Delabaere eric.delabaere@univ-angers.fr

CONTENUS

Ce cours concerne l'apprentissage de Latex, outil de communication scientifique largement utilisé, en particulier dès le semestre 2 pour le rapport du TER. Une partie de cet enseignement est en autoformation en salle informatique. Il pourra avoir lieu au semestre 2, selon les disponibilités et les besoins.

COMPÉTENCES

- Maîtrise des rudiments de Latex.
- Être capable de rédiger un rapport de nature scientifique (et plus précisément mathématique) sous Latex (ex : le rapport de TER).

SUPPORTS OU RÉFÉRENCES

Cours et vidéos mises à disposition sur Moodle pour un travail préalable à produire.

UE6

DROITS ET DONNÉES NUMÉRIQUES

Legal aspect of data

Responsable Gilles Stupfler gilles.stupfler@univ-angers.fr Intervenante Ingrid Dumont, Consultante RH

CONTENUS

Ce cours a pour objet, à travers des grands thèmes du Droit de l'univers numérique, d'aborder les problèmes que les étudiants pourront rencontrer durant leur vie profes-

sionnelle, à l'occasion de la mise en place ou de l'exploitation ou encore de l'administration d'un système informatique.

SEMESTRE 2

Les noms des responsables et intervenants sont donnés sous réserve de modifications.

BLOC MATHÉMATIQUES UE OBLIGATOIRES

UE1

DATA MINING ET CLASSIFICATION

(note placher de 8/20) Datamining and Classification

Responsable Jean-Marc Labatte jean-marc.labatte@univ-angers.fr

PRÉREQUIS

Notions et contenus

Théorie de la mesure et intégration (licence mathématiques L3); calcul des probabilités (licence mathématiques L3); algèbre linéaire en dimension finie (licence mathématiques L3); modules de statistiques et d'analyse numérique matricielle du premier semestre; langages R et Python.

Compétences et capacités

Maîtriser les compétences enseignées dans le module de statistiques du semestre 1 : statistique descriptive, modélisation, analyse des données ; maîtriser les bases de l'algèbre linéaire et du calcul matriciel, notamment : changement de base, recherche des valeurs propres, des valeurs singulières, la projection orthogonale de Rⁿ ; avoir une connaissance minimale des langages R et Python.

CONTENUS

Principaux concepts du datamining ; analyse des données (ex : ACM, AFM, MDS) ; classification supervisée (k-plus proches voisins, analyse discriminante, arbres de décision, SVM, etc.) ; courbes ROC et AUC ; classification non-supervisée (k-means, classifications hiérarchiques, DBSCAN, etc.) ; mise en pratique sous R et/ou Python.

COMPÉTENCES

— Mettre en pratique l'analyse des données vue en statistiques au premier semestre (ACP, AFC) ainsi que les méthodes vues dans le module (ex : ACM, AFM, MDS) : interprétation et démonstration par l'exemple. Être capable d'interpréter graphiquement les

sorties fournies par les logiciels de statistique pour en déduire des conclusions pertinentes en analyse des données.

- Comprendre le principe de la classification supervisée par l'intermédiaire des méthodes usuelles (k-plus proches voisins, analyse discriminante, arbres de décision, SVM, etc.). Mettre en œuvre ces méthodes sur des exemples concrets.
- Connaître le principe des algorithmes simples de classification non supervisée (k-means, classifications hiérarchiques, DBSCAN, etc.). Comprendre par l'exemple la structure d'un modèle de mélange et son estimation par un algorithme EM. Mettre en œuvre ces méthodes sur des exemples concrets.
- Savoir utiliser R ou Python pour largement exploiter les méthodes étudiées dans le module, en particulier les méthodes de classification et de réduction de dimension.

BIBLIOGRAPHIE

- T. Hastie, R. Tibshirani, J. Friedman, The element of Statistical Learning. Data mining, inference, and prediction. Second edition. Springer Series in Statistics. Springer, New York, 2009
- R. Garreta, G. Moncecchi, Learning scikitlearn: machine learning in python. Packt Publishing, 2013
- Cornillon P.A., Guyader A., Husson F., Jégou N., Josse J., Kloareg M., Matzner-Løber E., Rouvière L., Statistiques avec R. PU Rennes, 3e édition revue et augmentée, 2012.

MODÈLES DE RÉGRESSION

Regression Models

Responsable Gilles Stupfler gilles.stupfler@univ-angers.fr

PRÉREQUIS

Notions et contenus

Théorie de la mesure et intégration (licence mathématiques L3) ; calcul des probabilités (licence mathématiques L3) ; algèbre linéaire en dimension finie (licence mathématiques L3) ; algèbre linéaire en dimension finie (licence mathématiques L3) ; module de statistique du premier semestre ; langages R et Python.

Compétences et capacités

Maîtriser les compétences enseignées dans le module de statistique du semestre 1 : statistique descriptive, modélisation, estimation ; maîtriser les bases de l'algèbre linéaire et du calcul matriciel, notamment : projection orthogonale de Rⁿ ; avoir une connaissance minimale des langages R et Python.

CONTENUS

Régression linéaire (simple/multiple); analyse de variance (1F/2F); analyse de covariance; effets aléatoires et effets mixtes; régression logistique; régression PLS; modèle linéaire généralisé; principe de la validation croisée et indicateurs de qualité (AiC, BiC, etc.). selon le temps disponible et les besoins de la formation, certaines de ces notions pourront être laissées de côté ou au contraire approfondies.

COMPÉTENCES

- Être capable de construire un modèle permettant d'expliquer une variable quantitative par une combinaison linéaire de régresseurs quantitatifs. Savoir estimer les para- mètres de ce modèle par la méthode des moindres carrés et leur associer des tests de significativité sous les hypothèses adéquates.
- Savoir construire un modèle d'ANOVA à un facteur et deux facteurs, avec ou sans interactions. Être capable d'estimer les paramètres de la modélisation. Savoir construire les tests de significativité associés à de tels modèles sous les hypothèses adéquates

- (comparaison multiple, homoscédasticité, correction de Bonferroni, influence des facteurs, des interactions, etc.).
- Savoir généraliser le point précédent à l'ANCOVA. Savoir construire les tests de significativité associés à de tels modèles sous les hypothèses adéquates (principalement l'homogénéité des pentes et des constantes).
- Comprendre le principe des effets aléatoires et effets mixtes introduits dans les modèles de régression. Savoir les mettre en évidence
- Savoir manipuler la régression logistique afin de faire le lien avec le module de classification.
- Connaître l'existence de régressions moins usuelles, comme la régression sur composantes principales, la régression PLS ou encore les modèles linéaires généralisés, et savoir globalement les techniques d'estimation qui leur sont associées.
- illustrer toutes les régressions étudiées avec R et/ou Python sur des jeux de données réelles.
- Savoir valider des modèles à l'aide des principaux indicateurs (AiC, BiC, etc.). Maîtriser la stratégie de la validation croisée.

BIBLIOGRAPHIE

- JM. Azaïs, JM. Bardet, Modèle linéaire par l'exemple. Dunod, 2e édition, (2012).
- P.A. Cornillon, E. Matzner-Løber, Régression avec R. Springer Editions, 2010
- G. Saporta, Probabilités, Analyse des données et Statistique. Technip, 3ème édition révisée (2011).

MODÉLISATION STOCHASTIQUE 2

Stochastic Modeling 2

Responsable Loïc Chaumont

loic.chaumont@univ-angers.fr

PRÉREQUIS

Notions et contenus

Cours d'intégration (licence mathématiques L3); cours de probabilités (licence mathématiques L3); modélisation stochastique du premier semestre; bases du langage Python.

Compétences et capacités

Maîtriser l'ensemble des compétences requises pour le cours de Modélisation Stochastique 1 ; connaître les bases sur les chaînes de Markov en temps discret ; connaître les méthodes classiques de simulation de variables aléatoires ; avoir une connaissance et une pratique minimale du langage Python.

CONTENUS

Chaînes de Markov en temps continu: Définition et propriétés. Temps d'atteinte, temps d'absorption. Lois invariantes et convergence à l'équilibre. Exemples du processus de Poisson, du processus de Poisson composé, du processus de naissance et mort et des processus de files d'attente. Étude du cas général des processus de branchement. Applications à des modèles de croissance de population. Processus de Poisson composé avec drift et applications à des modèles de ruine.

Simulations: Simulations sous Python de chaînes de Markov en temps continu. Simulation de la loi invariante, du temps d'absorption. Modélisation de problèmes de ruine et de croissance de populations.

COMPÉTENCES

- Connaître les notions élémentaires sur les chaînes de Markov à espace d'état fini ou dénombrable.
- Savoir simuler une variable aléatoire, une chaîne de Markov et sa loi invariante.
- Savoir illustrer les différents résultats de convergence de suites de variables aléatoires et de chaîne de Markov.
- Savoir utiliser la méthode de Monte Carlo.
- Connaître la définition des chaînes de Markov et savoir créer un modèle en temps

discret et en temps continu.

- Plus particulièrement, savoir modéliser un problème de ruine (risque, assurance) ou bien de croissance de population en utilisant les processus classiques : processus de Poisson composé (avec drift), processus de naissance et mort.
- Savoir simuler sous Python des chaînes de Markov en temps discret et en temps continu.

BIBLIOGRAPHIE

- James Norris, Markov Chains. Cambridge University Press (1998)
- Robert P. Dorrow, introduction to stochastic processes with R. Wiley (2017)

BLOC OUTILS NUMÉRIQUES ET INFORMATIQUE - UE OBLIGATOIRES

UE4

STRUCTURATION DES DONNÉES

(note placher de 8/20)

Responsable Corentin Lothodé

corentin.lothode@univ-angers.fr

PRÉREQUIS

Notions et contenus

Module POO en Python ; partie systèmes du module de mise à niveau.

Compétences et capacités

Connaissance et pratique du langage Python et de son environnement ; maîtriser les principes algorithmiques pour analyser un problème et concevoir une solution.

CONTENUS

- Bases de données relationnelles : utiliser/installer un SGBD (ex: MariaDB ou postgresql); les ORM (mappings objet-relationnel) Python (ex: SQLalchemy).
- Données textuelles : encodage, traitement sous Unix.
- Structuration et formats d'échange de données : XML, JSON, HD.
- Technologies web, développement d'application web (framework Django).
- Réalisation d'un projet avec soutenance orale et/ou rapport.

COMPÉTENCES

- Connaître l'algèbre relationnelle, les bases

de l'écriture des requêtes SQL.

- Connaître les rudiments de l'administration de bases de données (créer une base de données, donner des droits à certains utilisateurs, etc.)
- Maîtriser l'intégration de requêtes vers un SGBD dans un langage de programmation.
- Maîtriser l'interaction avec des sites Web dynamiques (consultation et publication de données Web).
- Maîtriser les commandes Unix pour traiter des données textuelles, connaître les rudiments
- Connaitre les formats XML et JSON et savoir les exploiter.
- Savoir mettre en œuvre les connaissances et savoir-faire acquis sur une application en relation avec l'UE métiers ou/et le projet.

BLOC CULTURE D'ENTREPRISE UE OBLIGATOIRES

UE5

ANGLAIS 2

English 2

Responsable Philippe Torres philippe.torres@univ-angers.fr intervenant Bruno Menan bruno.menan@univ-angers.fr

PRÉREQUIS

Notions et contenus

Les bases de la langue anglaise.

Compétences et capacités

Maîtriser le niveau B1 du CECRL (dit « d'utilisateur indépendant »).

CONTENUS

- Permettre aux étudiants de continuer à travailler les cinq compétences en langue compréhension écrite et orale, expression écrite et orale, et interaction orale à travers des supports authentiques (articles, documentaires, documents audio et vidéo d'internet, graphiques...) et des activités variées (exercices de compréhension, d'expression écrite, jeux de rôle, débats, présentations orales...).
- Étoffer les connaissances lexicales.
- Améliorer la prononciation et revoir cer-

tains points de langue le cas échéant.

 Valider à l'issue du 2ème voire 3ème semestre un niveau B2 du CECRL (Certification).

COMPÉTENCES

On vise, à l'issue du 2ème voire 3ème semestre du Master, le niveau de compétence B2 du Cadre Européen Commun de Référence pour les Langues (CECRL) qui est résumé comme suit : « Peut comprendre le contenu essentiel de sujets concrets ou abstraits dans un texte complexe, y compris une discussion technique dans sa spécialité. Peut communiquer avec un degré de spontanéité et d'aisance tel qu'une conversation avec un locuteur natif ne comporte de tension ni pour l'un ni pour l'autre. Peut s'exprimer de façon claire et détaillée sur une grande gamme de sujets, émettre un avis sur un sujet d'actualité et exposer les avantages et les inconvénients de différentes possibilités.»

SUPPORTS OU RÉFÉRENCES

Les ressources mises à disposition en autoformation recouvrent entre autres : plateforme LANSAD UA; Ressources en ligne (UNT UOH par exemple) ; Logiciels de type Rosetta Stone. Plateforme Moodle.

UE5

INSERTION PROFESSIONNELLE

Professional Integration Program

Responsable Gilles Stupfler gilles.stupfler@univ-angers.fr intervenante Chloé Maillet (SUiO-iP) chloe.maillet@univ-angers.fr

CONTENUS

Rédaction de CV et préparation aux entretiens d'embauche (stages, alternance, emplois). Découverte du milieu professionnel.

UES

TRAVAIL D'ÉTUDE ET DE RECHERCHE (TER)

Introduction to Research Methods

Responsable Gilles stupfler gilles.stupfler@univ-angers.fr intervenants Tuteurs

PRÉREQUIS

Notions et contenus

Contenus du MI-DS du SI (et en cours au S2). Compétences et capacités

Connaissance des bases du logiciel Latex ; ensemble des compétences scientifiques et d'outils informatiques du M1-DS

CONTENUS

Le Travail Encadré de Recherche (TER) est un travail de 4-5 mois réalisé en laboratoire par l'étudiant ou par un binôme d'étudiants. Encadré par un enseignant tuteur, il donne lieu à la rédaction d'un rapport et à une soutenance orale pouvant être faite en anglais. Ce travail met en œuvre les connaissances théoriques acquises pendant l'année sur des problèmes concrets issus de questions intéressant le milieu professionnel. Les documents d'appui peuvent être des textes en anglais, ce qui participe de la pratique de l'anglais scientifique et technique. Dans certains cas, le sujet du TER peut être mis en relation avec le stage facultatif. On autorise la pédagogie inversée, le TER peut être l'occasion de présenter à la classe une méthode statistique évoluée et non étudiée en cours.

COMPÉTENCES

- Savoir mettre en œuvre les connaissances théoriques acquises en mathématiques appliquées de l'année du M1-DS sur des problèmes concrets.
- Savoir produire un travail d'expérimentation numérique, à l'aide de logiciels et langages *ad hoc*, Python, R, SQL, ... et rédiger un rapport écrit selon des supports de communication *ad hoc* et des contraintes définies.
- Savoir définir et respecter des modalités de réalisation, leurs priorités, leur planning.
- Savoir s'exprimer à l'oral dans un cadre défini et travailler en équipe.

STAGE FACULTATIF

Optional Internship Program

Responsable Gilles stupfler gilles.stupfler@univ-angers.fr

CONTENUS

il est possible de réaliser un stage facultatif. İl est obligatoirement conventionné et, en particulier, il est soumis à l'appréciation du responsable de la formation. Ce stage ne donne pas lieu à une notation et n'est affecté d'aucun ECTS. Le stage est placé en fin d'année académique (de fin mai à fin août), il est à l'initiative exclusive de l'étudiant qui souhaite valoriser son cursus académique. Ce type de stage est recommandé pour les étudiants souhaitant accomplir le M2 en alternance. Un stage à l'international d'étude et de perfectionnement en langue étrangère est aussi possible. De nombreuses possibilités existent, se renseigner (très tôt) sur l'ensemble des partenariats entre l'Université d'Angers et d'autres universités. Il sera demandé aux étudiants concernés de résumer en quelques lignes le déroulement du stage au responsable de la formation, mais ni rapport ni soutenance ne seront exigés.

COMPÉTENCES

Acquérir une première expérience professionnelle pour aborder le M2 dans les meilleures conditions, commencer à se faire connaître du milieu professionnel.

BLOC MÉTIERS - UE OPTIONNELLES (UN CHOIX SUR DEUX)

Option 1

Option 2

UE6

INTRODUCTION À LA GÉNOMIQUE

Introduction to Genomics

Responsable Claudine Landès claudine.landes@univ-angers.fr

CONTENUS

Cet enseignement vise à donner les notions de base en biologie afin de comprendre les concepts de la biologie moderne nécessitant des développements mathématiques en modélisation et en statistique.

- introduction aux notions de base en biologie cellulaire et moléculaire :
 - · Composition moléculaire du vivant.
 - La cellule eucaryote et procaryote.
 - Reproduction sexuée et hérédité.
 - Des gènes aux protéines.
- La génomique et les données omiques :
 - Introduction aux méthodes NGS (Next Generation Sequencing).
 - Génomique : séquençage de génomes complets (NGS) ; prédiction de gènes ; annotation structurale des génomes ; annotation fonctionnelle des génomes.
 - Transcriptomique et épigénomique : expression des gènes et régulation de leur expression.

COMPÉTENCES

A l'issue de la formation, les étudiants :

- Sauront ce qu'est une cellule et connaîtront les différences entre cellules procaryotes et eucaryote.
- Auront des notions de chimie du vivant : les constitutions de l'ADN, de l'ARN et des protéines
- Comprendront le passage de l'information génétique d'un individu à ses descendants.
- Comprendront la régulation de l'expression génétique au sein d'une cellule ou d'un tissu qui fait qu'un même génotype conduit à des phénotypes différents au sein d'un individu ou d'une population.

UE6

DATA MINING ET ÉCONOMIE

Datamining and Economy

Responsable Christohe Daniel christophe.daniel@univ-angers.fr

PRÉREQUIS

Notions et contenus

UE de statistique du premier semestre, UE parallèle de datamining et classification du second semestre ; autoformation en économétrie.

Compétences et capacités

Avoir des notions de base en statistique, analyse des données et économétrie. Rudiments de R.

CONTENUS

Analyse en composantes principales, analyse factorielle des correspondances, analyse des correspondances multiples, analyse factorielle multiple, analyse sur données mixtes, classification hiérarchique, régressions sur composantes principales, Moindres Carrés Partiels.

Ce cours d'analyse de données avancée et de statistiques multivariées présente les méthodes dont l'objectif principal est de simplifier la complexité des bases de données statistiques en mettant en évidence les corrélations entre les variables, les ressemblances entre les individus, et en perdant le moins possible d'information expliquée. Un lien est ensuite fait avec les cours d'économétrie par la présentation (sur R et sur SAS) des modèles de régressions sur variables latentes (PCR et PLS) qui permettent notamment de corriger les biais de multi-colinéarité entre les variables.

COMPÉTENCES

- Méthodes d'analyses factorielles classiques (ACP, AFC et ACM).
- Méthode de classification hiérarchique ascendante.
- Méthodes plus complètes : Analyse Facto-

rielle Multiple, Analyse Factorielle sur Données Mixtes, etc.

- imputation des données manquantes (Miss Mda).
- Régressions sur variables latentes : Régressions sur composantes principales et Moindres Carrées Partiels..

SUPPORTS OU RÉFÉRENCES

- Husson, Lê et Pagès : Analyse de données avec R, presses Universitaires de Rennes, 2009.
- Cornillon, Husson, Jégou, Matzner-Løber : Statistiques avec R, Presses universitaires de Rennes, 2010.

VALIDATION DU MASTER I ET POURSUITE D'ÉTUDES

VALIDATION DES SEMESTRES ET DE L'ANNÉE M1-DS

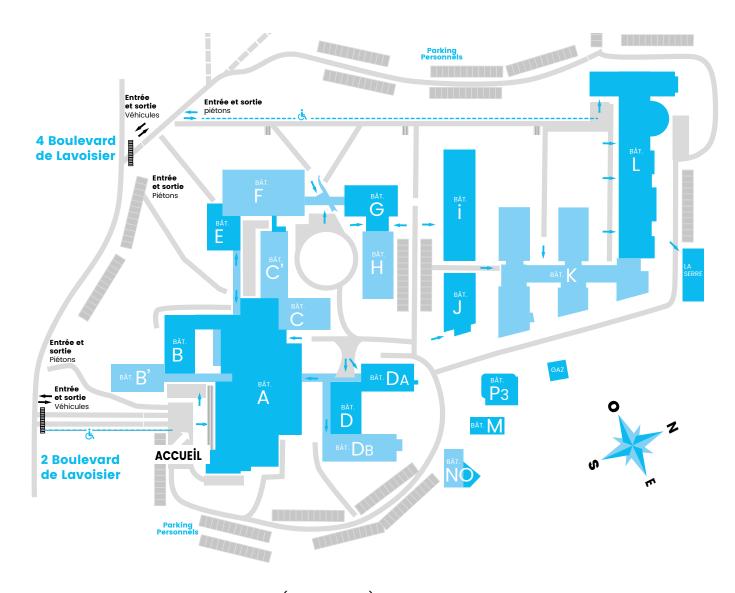
Les modalités d'évaluation des compétences des UE et EC ont été détaillées. En complément de ces évaluations, un ensemble de devoirs (travail personnel sur temps libre) peut être demandé, selon un calendrier distribué aux étudiants en début de semestre. Ils sont préparatoires aux contrôles continus ou/et terminaux. L'enseignant peut éventuellement intégrer ces notes dans la note de contrôle continu (CC) sous réserve d'en avoir averti au préalable les étudiants.

La note (sur 20) attribuée au semestre est la moyenne pondérée des notes obtenues par UE, les coefficients de pondération étant identiques aux ECTS. L'obtention de la moyenne (10 et plus) sur un semestre entraîne la validation de ce semestre et des 30 ECTS associés. Une note plancher peut être définie pour certaines UE. Dans ce cas, l'obtention d'une note strictement inférieure à cette note plancher entraîne la défaillance (DEF) pour le semestre concerné, sauf avis contraire du jury.

La note (sur 20) sur l'année de M1-DS est la moyenne des notes obtenues pour les semestres 1 et 2. L'obtention de la moyenne (10 et plus) sur l'année M1-DS entraîne la validation de l'année et des 60 ECTS associés.

JURY - REDOUBLEMENT EN M1-DS

il est organisé trois jurys :


- Un jury d'évaluation chargé de valider les résultats d'examen obtenus dans les unités du ler semestre.
- Un jury de lère session (après les examens du second semestre). Les règles de compensation entre semestres s'appliquent dès ce jury pour la validation de la première année de master.
- Un jury de 2ème session.
- Suivant le règlement de l'Université d'Angers, le redoublement du M1-DS est soumis à l'avis du jury. De manière générale, au plus un redoublement sera accordé (soit deux inscriptions), sauf décision d'extension accordée par le jury pour raisons spécifiques (maladie, étudiants salariés, ...).

POURSUITE D'ÉTUDE EN M2-DS ANNÉE DE CÉSURE OBTENTION DU MASTER

La validation du M1-DS donne l'accès de droit en deuxième année M2-DS. En formation initiale et préalablement à leur accès en M2-DS, les étudiants ayant validé le M1-DS peuvent être autorisés à effectuer une année de césure, dans les conditions fixées par l'Université d'Angers et conformément à la circulaire MENS1515329C, n°2015-122 du 22-07-2015 du Ministère.

Le diplôme de Master est délivré à l'issue d'une année de Master 2 avec la validation de 120 ECTS sur les deux années.

- A Scolarité : Accueil : Enseignement (Amphi A à E) : Administration
- **B** Enseignement biologie
- B' Enseignement biologie
- Enseignement chimie
- c' Recherche
- Enseignement physique
- Da Enseignement physique
- **Db** Recherche
- **E** Enseignement biologie
- F Enseignement biologie i Recherche
- **G** Enseignement géologie i informatique
- H Enseignement informatique I Recherche
- i Enseignement mathématiques i Recherche
- J Enseignement chimie
- K Recherche
- Enseignement transversaux i Enseignement (Amphi L001 à L006)

FACULTÉ DES SCIENCES

UNIVERSITÉ D'ANGERS

2, Boulevard Lavoisier 49045 ANGERS CEDEX 01 T.0241735353 www.univ-angers.fr

