

Introduction à l'optique non linéaire

En bref

- > Langue(s) d'enseignement: Français
- > Ouvert aux étudiants en échange: Oui

Présentation

Description

Polarisation non linéaire, susceptibilité non linéaire, génération de seconde harmonique, effet électro-optique, rectification optique, effet Kerr, autofocalisation, soliton.

Objectifs

Contenu:

Comparaison optique linéaire et non linéaire.

Origine d'une nonlinéarité optique, notion de polarisation des milieux de propagation.

Approche tensorielle de la susceptibilité diélectrique non linéaire.

Non linéarités quadratiques : rectification optique, effet électro-optique, doublage de fréquence.

Etude de la génération de seconde harmonique : équation de propagation, hypothèse de l'enveloppe lentement variable, condition d'accord de phase, efficacité de conversion, quasi-accord de phase.

Non linéarités cubiques : effet Kerr, automodulation de phase, autofocalisation, autoguidage, propagation soliton.

Heures d'enseignement

CM Cours magistral 9,33h

TD Travaux dirigés 9,33h

Pré-requis obligatoires

Notions et contenus :

Théorie électromagnétique et équations de Maxwell dans les milieux.

Compétences :

Une bonne maîtrise des techniques de calcul élémentaires est souhaitable.

Compétences visées

Comprendre les effets optiques non linéaires du deuxième et du troisième ordre. Savoir déterminer les coefficients et paramètres associées à une interaction non linéaire (susceptibilité non linéaire, coefficient effectif, désaccord de phase, intensité générée). Application à la génération de seconde harmonique, la sommation et la différence de fréquences, la rectification optique, l'automodulation de phase, les solitons.

infos pratiques

Lieu(x)

Angers

Campus

> Campus Belle-beille

