

Techniques de spectroscopies et microscopies

Niveau d'étude BAC +5 / master ECTS 1 crédits Composante Faculté des sciences

En bref

> Langue(s) d'enseignement: Français

> Ouvert aux étudiants en échange: Oui

Présentation

Description

- > X and electron microscopy sciences
- # Spectroscopies with electron microscopes : EELS et EDX
- # Spectroscopy of X absorption in synchrotron : XANES et EXAFS
- # Electron spectroscopy for surface characterization: XPS
- > Near-field Microscopies
- # AFM : contact mode (c-AFM), non-contact (nc-AFM), intermittent contact (t-AFM), lateral forces (If-AFM), spécific interactions, force spectroscopy.
- # SNOM: Optical near-field, operating principle, type of set-up, experimental set-up
- # STM: topographic mode (İ-V constant or constant tip-sample distance) and tunnel-effect spectroscopy (STS). > Raman Spectroscopy
- # Relation of molecular-structures macroscopic phenomena (physical origin of the refractive index, absorption, diffusion).
- # Application of Raman spectroscopy in microscopy.
- # Main sources of light (white source, LED, Laser diode) : materials and temporal and spectral characteristics.
- # Principles of Raman and Resonance Raman spectroscopy.
- # Extension on non-linear spectroscopy (second harmonic generation, emission with biphotonic absorption).

Objectifs

The objective of this module is first to complete the knowledge of the student on the microscopy techniques already approached in M1. Advanced microscopy techniques such as X microscopy (STXM, tomography), and near field microscopy (AFM, STM, SNOM) in the aim to acquire informations (dimensions, shape, composition, structu-ring) at the nanometric scale will be discussed without going deeply into the physics of these techniques, but simply as

characterization tools for a student chemist. The goal is to answer the question: What is the useful technique to get important informations to know?

With the same objective, Raman spectroscopy will be described as a tool for characterizations and applications.

Heures d'enseignement

CM - Techniques de spectroscopies et microscopies

Cours magistral

12h

Compétences visées

Be able to explain the fundamental differences between spectroscopic methods pre-sented for the characterization of materials (XPS, XANES, EDX, EELS).

Know how to choose the best characterization technique based on the sample concerned.

Know how to choose which microscopies for the best characterization of materials and surfaces.

Be able to use and interpret imaging results obtained with near-field microscopies.

Be able to understand the relevance of scientific articles based on spectroscopic studies and near-field characterization of materials.

infos pratiques

Lieu(x)

Angers

Campus

> Campus Belle-beille

