Niveau d'étude
BAC +4
ECTS
6 crédits
Composante
Faculté des sciences
Liste des enseignements
Modélisation Stochastique 1
6 crédits
Modélisation Stochastique 1
Niveau d'étude
BAC +4
ECTS
6 crédits
Composante
Faculté des sciences
Compléments de probabilité : convergence de suites de variables aléatoires (presque sûre, en probabilité, en loi), loi conditionnelle (cas discret ou continu), introduction à l’espérance conditionnelle.
Chaînes de Markov : chaînes de Markov à espace d’états fini ou dénombrable, définition et propriétés élémentaires, classification des états, temps d’arrêt et propriété de Markov forte, récurrence et transience, lois invariantes, temps d’atteinte, convergence à l’équilibre, théorème ergodique. Application à des modèles classiques (marches aléatoires, ruine du joueur, Ehrenfest, TCP, Wright-Fisher, …)
Contenu
Simulation : modélisation et simulation numérique d’une v.a. de loi classique donnée, d’une suite de v.a. indépendantes. Modélisation et simulation d’une chaîne de Markov, de sa loi invariante. Illustration des convergences p.s. et en probabilité et des théorèmes de convergence à l’aide des simulations : loi des grands nombres, théorème limite central, théorèmes ergodiques pour les chaînes de Markov. Méthodes de Monte Carlo, notions sur les vitesses de convergence. Mise en pratique avec R.